新闻事件可以极大地影响股票市场。在本文中,我们只利用新闻标题来预测金融新闻事件后股票价格的短期变动。为了实现这一目标,我们引入了一种新的文本挖掘方法,称为微调上下文嵌入递归神经网络(FT-CE-RNN)。与以往使用静态向量表示新闻(静态嵌入)的方法相比,我们的模型使用了由Transformer(BERT)的双向编码器表示生成的标题的上下文化向量表示(上下文化嵌入)。我们的模型得到了这个股票运动预测任务的最新结果。与其他基准模型相比,该模型在精度和交易模拟方面都有显著提高。通过对彭博新闻数百万条头条新闻的各种交易模拟,我们证明了该模型在真实场景中的能力。

详情请参阅原文。

链接:https://arxiv.org/abs/2107.08721

内容中包含的图片若涉及版权问题,请及时与我们联系删除