随着BERT、GPT-3、DALL·E等超大模型的兴起,自监督学习+预训练模型微调适配方案,逐渐成为主流。这种范式会先在超大规模海量数据上进行自监督的模型预训练,然后适配到广泛的下游任务。
自监督训练使得基础模型(Foundation Models)对显式注释的依赖性下降,也带来了智能体基本认知能力(例如,常识推理)的进步。
但与此同时却也导致了基础模型的「涌现」与「同质化」特性。所谓「涌现」,意味着一个系统的行为是隐性推动的,而不是显式构建的;所谓「同质化」,即基础模型的能力是智能的中心与核心,大模型的任何一点改进会迅速覆盖整个社区,其隐患在于大模型的缺陷也会被所有下游模型所继承。
自监督学习+微调的方案,作为一种研究范式,其带来的利弊在当下的人工智能研究中日益凸显。如何才能更好地研究这种范式(以及这些模型)呢?
针对这一问题,Percy Liang,李飞飞等一众学者,根据这些模型的中心地位和不完备性,将其统一命名为基础模型(Foundation Models),并建立了基础模型研究中心(CRFM,Center for Research on Foundation Models),以探索基础模型面临的机遇和挑战。
近期,Percy Liang、李飞飞等人将为此举办一场 Workshop of Foundation Models(8月23~24日)。在研讨会之前,100多位学者联名发表了一份 200 多页的研究综述《On the Opportunities and Risk of Foundation Models》。
本文为这篇综述的解读文章,按照原文体系结构重新调整和梳理了基础模型的时代问题,旨在帮助领域科研工作者更好的研究、部署以及形成安全可靠的应用提供借鉴和研究参考。
限于长度,本文对原文内容有删改。
论文研究路线按照四个部分,分别阐述了基础模型的能力、应用领域、技术层面和社会影响四个方面,层次结构组织如下:
-
能力:语言、视觉、机器人学、推理、交互、理解等; -
应用:医疗、法律、教育等; -
技术:模型内部角度(建模、训练、适应、评估),模型输入输出角度(数据),模型的系统性分析角度(数据、安全与隐私、稳健性、理论、可解释性) -
社会影响:不平等、滥用、环境、法规、经济、伦理道德等。
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢