3D Human Pose Estimation(以下简称 3D HPE )的目标是在三维空间中估计人体关键点的位置。3D HPE 的应用非常广泛,包括人机交互、运动分析、康复训练等,它也可以为其他计算机视觉任务(例如行为识别)提供 skeleton 等方面的信息。关于人体的表示一般有两种方式:第一种以骨架的形式表示人体姿态,由一系列的人体关键点和关键点之间的连线构成;另一种是参数化的人体模型(如 SMPL [2]),以 mesh 形式表示人体姿态和体型。
近几年,随着深度学习在人体姿态估计领域的成功应用,2D HPE 的精度和泛化能力都得到了显著提升。然而,相较于 2D HPE,3D HPE 面临着更多的挑战。一方面,受数据采集难度的限制,目前大多数方法都是基于单目图像或视频的,而从 2D 图像到 3D 姿态的映射本就是一个多解问题。另一方面,深度学习算法依赖于大量的训练数据,但由于 3D 姿态标注的难度和成本都比较高,目前的主流数据集基本都是在实验室环境下采集的,这势必会影响到算法在户外数据上的泛化性能。另外,2D HPE 面临的一些难题(例如自遮挡)同样也是 3D HPE 亟待解决的问题。
本文将结合 MMPose 对 3D HPE 的主流算法和数据集做一些介绍。
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢