Mixup 是⼀种简单且有效的数据增强⽅法,⾃2018年MIT和facebook提出之后,⽆论在业界还是在学术界都有了很强的地位,成为⼤家的⼀种标配。下⾯就从开⼭之作逐步简单的介绍下如何在NLP领域使⽤的吧。
具体的论文包括:
1. Mixup
论文标题: mixup: BEYOND EMPIRICAL RISK MINIMIZATION -- ICLR2018
2. wordMixup 和 senMixup
论文标题: Augmenting Data with Mixup for Sentence Classification: An Empirical Study -- 2019 arxiv
3. Manifold Mixup
4. Mixup-Transformer
论文标题: Mixup-Transformer: Dynamic Data Augmentation for NLP Tasks -COLING2020
论文地址: https://arxiv.org/pdf/2010.02394.pdf
5. TMix
论文标题: MixText: Linguistically-Informed Interpolation of Hidden Space for Semi-Supervised Text Classification -- ACL2021
代码: https://github.com/GT-SALT/MixText
6. SeqMix
论文标题: SeqMix: Augmenting Active Sequence Labeling via Sequence Mixup -- EMNLP2020
代码: https://github.com/rz-zhang/SeqMix
7. SSMix
论文标题: SSMix: Saliency-Based Span Mixup for Text Classification -- ACL2021
论文地址: https://arxiv.org/pdf/2106.08062.pdf
代码: https://github.com/clovaai/ssmix
内容中包含的图片若涉及版权问题,请及时与我们联系删除
评论
沙发等你来抢