今天介绍的是中南大学高建良团队和他人合作发表在IJCAI2021上的一篇文章“MDNN: A Multimodal Deep Neural Network for Predicting Drug-Drug Interaction Events”。本文指出许多基于人工智能的技术已经被提出并用于预测药物-药物反应(DDI),而现有的研究方法较少关注DDI与靶标、酶等多模态数据之间的潜在相关性。为了解决这一问题,作者提出了一个用于DDI预测的多模态深度神经网络(MDNN)。本文设计了一个基于药物知识图谱(DKG)的通道和基于异质特征(HF)的通道的双通道框架来获取药物的多模态表征。最后,通过一个多模态融合神经层来探索药物多模态表征之间的互补关系。作者在真实数据集上进行了广泛的实验。结果表明,MDNN能够准确预测DDI,并优于现有的模型。

论文地址:https://www.ijcai.org/proceedings/2021/0487.pdf

MDNN模型的结构如上图所示,由两个主要通道组成:基于DKG的通道和基于HF的通道。基于DKG的通道利用图神经网络在构建的药物知识图上提取药物之间的拓扑结构信息和语义关系。基于HF的通道旨在从不同的模式中提取预测信息,以提高学习模型的性能。采用多模态融合神经层有效地辅助结构信息和异质性特征的联合表示学习,以探索多模态数据的交叉互补性。

内容中包含的图片若涉及版权问题,请及时与我们联系删除