- 简介目前的图像编辑方法主要使用DDIM反演,采用两个分支扩散方法来保留原始图像的属性和布局。然而,这些方法在非刚性编辑方面遇到挑战,涉及改变图像的布局或结构。我们的全面分析表明,DDIM潜在的高频分量对于保留原始图像的关键特征和布局至关重要,但也显著限制了这些方法的应用。针对这一问题,我们介绍了FlexiEdit,通过减少目标编辑区域中的高频分量来优化DDIM潜在,提高对输入文本提示的忠实度。FlexiEdit包括两个关键组成部分:(1)潜在细化,修改DDIM潜在以更好地适应布局调整,(2)通过重新反演增强编辑忠实度,旨在确保编辑更准确地反映输入文本提示。我们的方法在图像编辑方面取得了显著进展,特别是在执行复杂的非刚性编辑方面,通过比较实验展示了其增强的能力。
- 图表
- 解决问题FlexiEdit: A Latent Refinement Approach to Complex Non-Rigid Image Editing
- 关键思路FlexiEdit enhances fidelity to input text prompts by refining DDIM latent and reducing high-frequency components in targeted editing areas, addressing the limitations of current image editing methods with non-rigid edits.
- 其它亮点FlexiEdit comprises two key components: Latent Refinement and Edit Fidelity Enhancement via Re-inversion. The approach represents notable progress in image editing, particularly in performing complex non-rigid edits, showcasing its enhanced capability through comparative experiments.
- Related work in this field includes DDIM Inversion, which is the primary method utilized in current image editing, and other approaches such as GAN-based methods and image inpainting techniques.
沙发等你来抢
去评论
评论
沙发等你来抢