VADER: Visual Affordance Detection and Error Recovery for Multi Robot Human Collaboration

2024年05月25日
  • 简介
    现今的机器人可以利用大型语言模型的丰富世界知识,将简单的行为技能串联成长期任务。然而,由于原始技能故障和动态环境,机器人经常在长期任务中被打断。我们提出了VADER,这是一个计划、执行、检测框架,具有寻求帮助作为一项新技能,使机器人能够在人类或其他机器人的帮助下恢复并完成长期任务。VADER利用视觉问答(VQA)模块来检测视觉可负担性并识别执行错误。然后,它为语言模型规划器(LMP)生成提示,LMP决定何时寻求其他机器人或人类的帮助来从长期任务执行中恢复。我们展示了VADER在两个长期机器人任务中的有效性。我们的试点研究表明,VADER能够通过向另一个机器人寻求帮助来清理桌子,执行复杂的长期任务。我们的用户研究表明,VADER能够通过向人类寻求帮助来清理道路,执行复杂的长期任务。我们收集了19个人对VADER性能与未寻求帮助的机器人性能的反馈。
  • 图表
  • 解决问题
    VADER: A Framework for Recovering from Errors in Long-Horizon Robotic Tasks by Asking for Help
  • 关键思路
    The VADER framework enables robots to recover from errors in long-horizon tasks by asking for help from humans or other robots, using visual question answering modules and a language model planner.
  • 其它亮点
    The VADER framework was tested on two long-horizon robotic tasks and showed effectiveness in completing tasks by asking for help. A pilot study and user study were conducted to gather feedback on VADER's performance. The framework leverages visual question answering modules and a language model planner to detect errors and prompt for help.
  • 相关研究
    Related work in this field includes research on long-horizon robotic tasks, visual question answering, and language model planning. Some relevant papers include 'Learning to Ask Questions in Open-domain Visual Question Answering' and 'Learning to Plan with Uncertain Specifications'.
PDF
原文
点赞 收藏 评论 分享到Link

沙发等你来抢

去评论