StateFlow: Enhancing LLM Task-Solving through State-Driven Workflows

2024年03月17日
  • 简介
    使用大型语言模型(LLMs)应对复杂任务的趋势是值得注意的,例如需要一系列动作和与工具和环境的动态交互的任务。本文提出了一种新型的基于LLM的任务解决范式——StateFlow,将由LLMs支持的复杂任务解决过程概念化为状态机。通过正确构建状态和定义状态转换,StateFlow实现了任务解决进程的基础,确保在整个任务解决过程中清晰跟踪和管理LLMs的响应。在每个状态中,StateFlow允许执行一系列动作,不仅涉及由特定提示指导的LLM响应的生成,还包括根据需要利用外部工具。状态转换由LLM做出的特定规则或决策控制,允许通过任务的预定义StateFlow模型进行动态和自适应的进展。对InterCode SQL和Bash基准测试的评估表明,StateFlow显著提高了LLMs的效率。
  • 图表
  • 解决问题
    StateFlow: A State Machine-Based Paradigm for Large Language Model-Based Task Solving
  • 关键思路
    StateFlow is a novel LLM-based task-solving paradigm that conceptualizes complex task-solving processes backed by LLMs as state machines, allowing for a dynamic and adaptive progression through the task's pre-defined StateFlow model.
  • 其它亮点
    StateFlow enhances LLMs' efficiency by grounding the progress of task-solving and ensuring clear tracking and management of LLMs' responses throughout the task-solving process. StateFlow allows execution of a series of actions, involving not only the generation of LLM's responses guided by a specific prompt, but also the utilization of external tools as needed. Evaluations on the InterCode SQL and Bash benchmarks show that StateFlow significantly enhances LLMs' efficiency.
  • 相关研究
    Related work includes research on large language models, task-solving paradigms, and state machines. Some relevant papers include 'GPT-3: Language Models are Few-Shot Learners' by Brown et al., 'Task-Oriented Dialog Systems: A Survey' by Zhang et al., and 'A Survey of State Machine Replication Techniques' by Almeida et al.
PDF
原文
点赞 收藏 评论 分享到Link

沙发等你来抢

去评论