- 简介现代显示器现在具备高动态范围(HDR)和广色域(WCG)的视频内容渲染能力。然而,大多数可用资源仍处于标准动态范围(SDR)。因此,我们需要确定一种有效的方法。现有的基于深度神经网络(DNN)的SDR到HDR转换方法优于传统方法,但它们要么太大无法实现,要么会产生一些可怕的伪影。我们提出了一种用于SDRTV到HDRTV转换的神经网络,称为“FastHDRNet”。该网络包括两个部分:自适应通用颜色转换和局部增强。该架构被设计为轻量级网络,利用全局统计和局部信息具有超高效率。经过实验,我们发现我们提出的方法在定量比较和视觉质量方面都实现了最先进的性能,同时具有轻量级结构和增强的推理速度。
- 图表
- 解决问题FastHDRNet: A Deep Learning Approach to HDR-Realistic Image Enhancement
- 关键思路FastHDRNet is a lightweight neural network that efficiently converts SDR video content to HDR with high visual quality and performance.
- 其它亮点The proposed FastHDRNet achieves state-of-the-art performance in both quantitative comparisons and visual quality with a lightweight structure and enhanced infer speed. The network includes two parts: Adaptive Universal Color Transformation and Local Enhancement. The experiment uses various datasets and shows that FastHDRNet outperforms existing methods in terms of speed and visual quality.
- Related studies in this field include 'Deep Bilateral Learning for Real-Time Image Enhancement' and 'Deep High Dynamic Range Imaging of Dynamic Scenes'.
沙发等你来抢
去评论
评论
沙发等你来抢